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Abstract  

One of the discussed parts of the regression model was 

choosing the optimal model. The optimal model in 

regression models was chosen to determine the important 

explanatory variables and the negligible variables and to 

express the relationship between the response variable and 

the explanatory variables more simply with the limitations of 

classical variable selection processes such as step-by-step 

selection, and compensated regression methods. One of the 

compensated regression models was Lasso regression. For 

data collection and statistical analysis in the presence of 

remote observations, instead of normal distribution, T-

Student distribution was used for the error of these data. In 

this article, we proposed a variable selection method called 

the T-Lasso Bayesian regression model for data analysis in 

the presence of outlying observations. The Bayesian t-lasso 

regression model, with two different representations of 

Laplace's prior density function for the coefficients of the 

regression model, was investigated, so that first the Laplace 

density function was discussed in the form of mixed 

distribution-normal scale and then in the form of mixed 

distribution-uniform scale. Then, by using simulation 

methods and real data analysis, the superiority of the 

Bayesian T-lasso regression method was shown by 

presenting the Laplace density function in a mixed-uniform 

scale over the normal mixed-scale display. 
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1. Introduction 
 Regression analysis is one of the most widely used methods for fitting models to data. One of the 

simplest and at the same time the most efficient methods for estimating regression model parameters is 

the method of the least squares of errors. One of the problems with the method of the least squares of 

errors is the ability to interpret it. On the other hand, many variables have the same behavior as other 

variables, or in fact, some variables are a linear combination of one or more other variables. 

Hence, in dealing with such issues, a small subset of variables that have the most impact are 

selected and estimated. Therefore, variable selection and coefficient estimation are the most essential 

parts of regression modeling. Methods of estimating the lowest powers. Second, progressive variable 

selection, etc., does not show reliable performance when faced with data that have different 

characteristics. Among the damages of the model when using these methods, we can mention the lack 

of stability, low prediction accuracy, and incorrect selection of variables. In addition, these problems 

are intensified when the correlation between predictor variables is high. Contraction methods have been 

considered as a solution to reduce these problems, especially when the correlation between predictor 

variables is high. These methods estimate the regression coefficients by applying restrictions on the 

range of their changes. Although the existence of such limitations reduces the variance of the estimator, 

https://nakiscience.com/index.php/pijme
mailto:nasim_wafa58@yahoo.com
mailto:shuja.ghori@yahoo.com


 

Polyhedron International Journal in Mathematics Education  
Volume 2, No 1, pp. 17-29, E-ISSN: 2987-6540 
https://nakiscience.com/index.php/pijme  

 

18  
This is an open-access article under the CC BY-SA license. 

 Copyright © 2024 by Author  

 

Original Article 

it creates a certain amount of bias, so we can hope that the mean of the squared error will eventually 

decrease (Wafa, 2020; Wafa et al., 2023). Among the common contraction estimators in regression 

model parameter estimation, we can mention the Ridge estimator, which was introduced by Horrell and 

Kennard. (Hoerl & Kennard, 1970) introduced the "Ridge" regression estimator, which is the gateway 

to the world of "compensated estimators". It was based on the regularization method (Karapetyants & 

László, 2024).  

Ridge regression is an introduction to the world of variable selection and estimation. This 

regression combats the problem of collinearity in linear models, and based on this, the compensated 

estimate was born. Due to the presence of all variables in the ridge estimator, its interpretation is not 

easily possible. Another member of this class is the Lasso estimator (Tibshirani, 1996). Instead of using 

compensation L2, Tibshirani minimized the second powers of the error compared to compensation 

function L1. This estimator led to the emergence of new estimators such as smooth truncated derivative 

estimator elastic net  (Zou, 2006; Zou & Hastie, 2005) hard threshold (Belloni & Chernozhukov, 2013). 

Using the L1 compensation shrinks each coefficient to zero and makes the additional variables exactly 

zero. The lasso estimator performs both variable selections and shrinks the coefficients at the same time. 

An interesting application of Lasso estimators is in thin models (models with a large number of zero 

parameters). Another application of Lasso estimator is when the dimension of the parameter space is 

greater than the dimension of the sample space. Due to the existence of a large number of variables in 

high-dimensional models, the interpretation of these models is very difficult.  

Therefore, the problem of variable selection plays a very important role in high-dimensional 

statistical modeling. Recently, many studies have been conducted in this field, for example, you can 

refer to (Wafa et al., 2023) and (Wafa et al., 2023; Wafa et al., 2023) pointed out. Despite the advantages 

of the Lasso estimator, the performance of the Lasso method as a method for choosing the optimal model 

is weak in the case where the observations include outlying data and the distribution of the error variable 

is considered normal] [5 with attention] Because outlying observations have a great effect on the fitted 

model and its related inferences, it is very important to use robust estimators for the presence of outlying 

data. Outliers are stable and considered the t-Student distribution as a suitable replacement for the 

normal distribution (Liu & Rubin, 1995; Shadrokh et al., 2021) in these two articles the Bayesian T-

Lasso regression method is proposed in the case where the observations include outlying data or the 

error distribution has an abnormal behavior. In this regard, in the second part of the article, we will 

review the normal Lasso Bayesian regression model. In the third part, the details of T-Lasso Bayesian 

regression model with two different representations of Laplace density function as mixed-normal scale 

and mixed-uniform scale have been discussed and a hierarchical Bayes model is obtained. In the 

following, the Gibbs algorithm for estimating the parameters of the T-Lasso Bayesian regression model 

is examined. 

In the fourth part, by using simulation methods and real data analysis, two methods have been 

studied and we will show that the Bayesian T-Lasso regression model with mixed representation-

uniformity scale has a satisfactory performance in comparison with the model with mixed 

representation. It has a normal scale. The comparison of the models has been done based on the criteria 

of knowing the deviation and the mean of the squared error and the convergence of the Gibbs algorithm 

using the Heidelberger and Welch method. The fifth section is dedicated to the results of the article. 

The Bayesian lasso regression model 

Briefly, we will present the Lasso-Bayesian regression model in this section to provide context 

for the new material on model uncertainty presented by (Park & Casella, 2008). 

𝑦|𝛽, 𝛼2~𝑁(𝑋𝛽, 𝛼2𝐼𝑛), 

𝛽𝑗|𝛼2, 𝜏  ~
𝔦𝔦𝑑 𝐷𝐸 (

𝜏

𝛼
) , 𝑗 = 1, … , 𝑝                                   

That here  𝐷𝐸 (
𝜏

𝛼
) is the double-exponential distribution with density function: 

𝑝(𝛽𝑗|𝛼2, 𝜏) =
𝜏

2𝛼
𝑒−

𝜏|𝛽𝑗|
𝛼                                                 (1) 

Here, we assume that the 𝑦 and 𝑋 columns are detrended, and therefore an intercept term is not 

included in the model. For a 𝛾 model with 𝑘 predictor variables, the key to evaluating model uncertainty 

when 𝜎2 is known is the ability to evaluate the integral. 
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𝑚𝛾 = (
𝑦

𝛼2
) = ∫ 𝑝(𝑦|𝛽𝛾 , 𝛼2)𝑝(𝛽𝛾/𝛼2)𝑑𝛽𝛾

= ∫(2𝜋𝛼2)
−

𝑛
2

𝑒
−

1
2𝑎2(𝑦−𝑋𝛾𝛽𝛾)

Τ
(𝑦−𝑋𝛾𝛽𝛾)

(
𝜏

2𝛼
)

𝑘

𝑒
−𝜏||𝛽𝛾||

1
/𝛼

𝑑𝛽𝛾            (2) 

where ||𝛽||
1
 is the 𝐿1-norm of β. 

Most of these cases and applications of the Bayesian lasso regression model ((Park & Casella, 

2008; Steele & Lopez-Fernandez, 2014; Zhu et al., 2008) have focused on the composition of the scale 

of normal representing the bi-exponential distribution, which is embedded in it. Variables are used to 

create a hierarchical representation of the prior distribution. However, this model formulation adopts a 

simple Gibbs sampler to obtain maps of the posterior distribution of 𝛽 for a fixed model. 

It does not lead to a simple expression for the marginal probability. Instead of working with the scale 

mixture representation, we consider the direct representation of the β posterior distribution presented by 

Hans (2009). By breaking the density function for the bi-exponential distribution (𝑝(𝛽𝑗|𝛼2, 𝜏) =

𝜏

2𝛼
𝑒−

𝜏|𝛽𝑗|

𝛼 ) into separate positive and negative components, Hans (2009) shows that for a given set of 

predictor variables 𝑝 ≤ 𝑛, the posterior distribution of 𝛽 is the normal-normal distribution: 

𝑝(𝛽|𝛼2, 𝜏, 𝑦) = ∑ 𝜔𝑧𝑁[𝑧](𝛽|𝜇𝑧, 𝛼2(𝑋Τ𝑋)
−1

𝑧∈Ζ𝑝

                                

The amount is collected 𝑍𝑝 = {−1, 1}𝑝 that shows 2𝑝orthants of ℝ𝑝. Urethane corresponds to a 

given 𝑧𝜖𝑍𝑝 is defined 𝑂𝑧 = 𝑅𝑧1 × 𝑅𝑧2 × … × 𝑅𝑧𝑝 𝑤ℎ𝑒𝑟𝑒 𝑅𝑧𝑝 is [0, ∞) if 𝑧𝑗 = 1 also if (−∞, 0)   is 𝑧𝑗 =

−1   .Each expression and sentence as a whole contain a normalized density function for a normal 

distribution restricted to being in a certain orthogonal: 

𝑁[𝑧](𝛽|𝑚, 𝑆) ≡
𝑁  (𝛽|𝑚, 𝑆)

𝑃(𝑧, 𝑚 𝑆)
1(𝛽𝜖𝑂z),      𝑤ℎ𝑒𝑟𝑒     𝑃(𝑧, 𝑚 𝑆) = ∫ 𝑁(𝑡|𝑚, 𝑆)𝑑𝑡

 

𝑂z

                              

The location vector for each term depends on the total ordinal     𝜇𝑧 = 𝛽̂𝑂𝐿𝑆 − 𝜏𝜎(𝑋𝑇𝑋)−1𝑧,   

where 𝛽̂𝑂𝐿𝑆 the least-squares estimate (𝑋𝑇𝑋)−1𝑋𝑇𝑦. Each term in (𝑝(𝛽|𝜎2, 𝜏, 𝑦) =

∑ 𝜔𝑧𝑁[𝑧](𝛽|𝜇𝑧, 𝜎2(𝑋Τ𝑋)
−1

𝑧∈Ζ𝑝
) also contains a weight. 

𝜔𝑧 = 𝜔−1
𝑃(𝑧, 𝜇𝑧, 𝜎2(𝑋Τ𝑋)

−1
)

𝑁(0|𝜇𝑧𝜎2(𝑋Τ𝑋)−1)
   𝑤ℎ𝑒𝑟𝑒     𝜔 = ∑

𝑃(𝑧, 𝜇𝑧, 𝜎2(𝑋Τ𝑋)
−1

)

𝑁(0|𝜇𝑧𝜎2(𝑋Τ𝑋)−1)
𝑧𝜖𝑍_𝑝

                                          

which makes (𝑝(𝛽|𝛼2, 𝜏, 𝑦)) a normalized density function. 

When 𝑝 > 𝑛, the posterior distribution density function cannot be shown as (𝑝(𝛽|𝛼2, 𝜏, 𝑦)). 

In this case, the probability surface (as a function of 𝛽) will be smooth in a posterior 𝑝 −  𝑛 subspace, 

which means that in this subspace the posterior distribution will have exponential tails (because to the 

previous distribution). Along any direction not in this subspace, the posterior will have normal tails as 

in (𝑝(𝛽|𝛼2, 𝜏, 𝑦)). While this complicates writing an expression for the posterior density function, it 

does not pose a problem to address model. 

Bayesian T-Lasso regression model 

Statistical inference based on normal distribution is known as vulnerable. It has robust procedures, 

mainly aimed at identifying outliers. After editing outliers, further analysis is often limited to least 

squares based on the ordinary linear model. A serious problem with this approach is that inferences from 

uncertainty fail in the process of elimination. In particular, the standard errors are very small. Wafa 

(2023) proposed a method for robust inference on regression models using the t-distribution. Its 

approach is to replace the normal distribution with the 𝑡- distribution in statistical models.   Often, in 

linear regression models, the distribution of errors is considered as 𝜀𝑖  ∼  𝑁(0; 𝜎2). In general, in 

addition to the normal distribution, errors can be from any other distribution. For example, T-Student's 

distribution, which A heavy-tailed distribution is a useful generalization of the normal distribution that 

can be used for statistical modeling in the presence of outlying data. Of course, the predictive 

consistency of Lasso regression does not require the assumption of normality of the errors, and it is 

sufficient that the errors have a mean of zero and (Hlavackova-Schindler, 2016) in this research, taking 
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into account the distribution of errors as ), 𝜀
𝑖

𝑖∙𝑖∙𝑑
     ̃  𝑡𝑣(0; 𝜎2) to generalize the Bayesian lasso regression 

model for observations in the presence of outlying data and under the title of T-lasso regression model 

Before examining the details of Bayesian t-lasso regression model, three useful and important lemmas 

in this field are discussed. 

Theorem1. (Showing t-Student's distribution in the form of a mixed-scale normal distribution) Suppose 

𝑦|𝑙 has a normal distribution with a mean of 0 and a variance of l. Also consider the distribution function 

𝑙 as an inverse gamma with parameters 𝑣/2 and 𝑣/2. Therefore, the marginal distribution, 𝑦, is the 

student’s -t distribution with the degree of freedom 𝑣 (Shadrokh et al., 2021).  

Proof. Definition1.  A random variable in the form 𝑦 ∼  𝑡𝑣(µ, 𝜎2) say has a 𝑡 distribution with the 

degree of freedom 𝑣 if its probability density is in the form 

𝑓𝑣(𝑦𝑖|𝜇, 𝜎2) = (
1

𝜋𝑣𝜎2
)

1
2

(
Γ (

[𝑣 + 1]
2

)

Γ (
𝑣
2

)
) (1 +

(𝑦𝑖 − 𝜇)2

𝑣𝜎2 )

−(
𝑣+1

2
)

                

Let µ be the location parameter and 𝜎2 be the scale parameter. The degree of freedom 𝑣 determines 

the weight of the tails of the distribution. For mean𝑣 > 1 tistribution 𝜇, and 𝑣 >  2, the variance of 

the distribution is equal to 
𝜎2𝑣

𝑣−2
. The special case 𝑣 = 1 is Cauchy distribution and 𝑣 = ∞ normal 

normal distribution. 

Lemma: 1 to find the marginal distribution of variable y. 

𝑓𝑦(𝑦) = ∫ 𝑓𝑦(𝑙|𝑦)𝑑𝑙
∞

0

∫
1

√𝑙

∞

0

exp (−
𝑦2

2𝑙
) 𝑙−

𝑣
2

−1 exp (−
𝑣

2𝑙
) 𝑑𝑙 

= ∫
1

√𝑙

∞

0

exp 𝑙−
𝑣+1

2
−1 exp (−

𝑦2 + 𝑣

2𝑙
) 𝑑𝑙 = Γ (

𝑣 + 1

2
) (

𝑦2 + 𝑣

2𝑙
)

−
𝑣+1

2

 

The last line corresponds to the t-Student distribution with 𝑣 degrees of freedom. It is possible to 

distribute t-Student 𝑡𝑣(µ, 𝜎2)  hierarchically. 

𝑦|µ, 𝜎2, 𝑙 ∼ 𝑁(µ, 𝑙𝜎2, 𝐼) 

𝑙|𝑣 ∼ 𝐼𝐺(
𝑣

2
,
𝑣

2
) 

also showed 

Lemma 2: To prove Lemma 2, it is necessary to calculate the marginal density of the random variable 

𝐿 as. 

𝑓(𝑙) = ∫
1

√2𝜋𝑣

∞

0

exp (−
𝑙2

27
) ×

𝜆2

2
exp (−

𝜆2𝑣

2
) 𝑑𝑣 =

𝜆

2
exp(−𝜆|𝑙|).              

is. By completing the square, we have the exponential expression in relation (integral): 

𝑓(𝑙) = ∫
𝜆2𝑒−𝜆|𝑙|

2√2𝜋

∞

0

∙
1

√𝑣
exp {−

1

2
(

|𝑙|

√𝑣
− 𝜆√𝑣)

2

} 𝑑𝑣.                   

By changing the variable 𝑢 = √𝑣 and 𝑑𝑣 = 2𝑢𝑑𝑢 expression. 

𝑓(𝑙) =
𝜆2𝑒−𝜆|𝑙|

√2𝜋
∫ exp {−

1

2
(

|𝑙|

√𝑢
− 𝜆√𝑢)

2

} 𝑑𝑢
∞

0

∙                                

it will be obtained. Also, by changing the variable. 

𝜂 =
|𝑙|

𝑢
− 𝜆𝑢,           

𝑑𝑢

𝑑𝜂
=

−1 +
𝜂

√𝜂2 + 4𝜆|𝑙|

2𝜆
                         

We have 

𝑓(𝑙) =
𝜆2𝑒−𝜆|𝑙|

2𝜆√2𝜋
∫ exp {1 −

𝜂

√𝜂2 + 4𝜆|𝑙|
} 𝑑𝜂,

∞

−∞
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𝜆2𝑒−𝜆|𝑙|

2
∫

1

√2𝜋
exp (

𝜂2

2
) 𝑑𝜂 −

𝜆2𝑒−𝜆|𝑙|

2
 

∞

−∞

∫ exp (−
𝜂2

2
)

𝜂

√𝜂2 + 4𝜆|𝑙|
𝑑𝜂

∞

−∞

=
𝜆𝑒−𝜆|𝑙|

2
      

that the last term follows the standard normal distribution and the integral is an odd function]. 

Lemma 3: We know  

∫ 𝜆𝑒−𝜆𝑧𝑑𝑧
 

𝑧>
|𝑥|

√𝜎2

= 𝑒
−𝜆

|𝑥|

√𝜎2 ,                           

Therefore, the probability density function of the Laplace distribution with zero mean and variance 

√𝜎2/𝜆 can be. 

𝜆

2√𝜎2
= 𝑒−𝜆𝑧𝑑𝑧 = 𝑒𝑒

−𝜆
|𝑥|

√𝜎2 =
𝜆

2√𝜎2
∫ 𝜆𝑒−𝜆𝑧𝑑𝑧

 

𝑢>
|𝑥|

√𝜎2

= 𝑒−𝜆𝑢𝑑𝑢    ∫
1

𝑢√𝜎2
 

𝜆2

Γ(2)
𝑢2−1

 

−𝑢√𝜎2<𝑥<𝑢√𝜎2
𝑒−𝜆𝑢𝑑𝑢                                            

 

be written and equality is proved as a result. 

Theorem 2 (Showing the Laplace distribution as a mixed distribution-normal scale) 

Assume that 𝐸(1) denotes the standard exponential distribution with mean one, Laplace (0, 1) denotes 

the standard Laplace distribution with mean zero and variance one, and 𝑁(µ, 𝜎2) has a normal 

distribution with mean µ and variance 𝜎2. Therefore, we have: 

𝑉~2𝐸(1),       𝐿|𝑉~𝑁(0. 𝑉)        ⟹         𝐿~𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0.1) 

In other words, if the random variable E with standard exponential distribution is independent of the 

random variable Z with standard normal distribution, then. 

𝐿~√2𝐸𝑍~𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0.1). 
Considering the scale parameter 𝜆, we have. 

𝑉~2/𝜆2𝐸(1),       𝐿|𝑉~𝑁(0. 𝑉)        ⟹         𝐿~𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0.1) 

Proof: Refer to Lemma, 1, 2 and 3. 

regression model 𝑦𝑖 = 𝑥𝑖
𝑇 𝛽 + 𝜀𝑖𝜀

𝑖

𝑖∙𝑖∙𝑑
     ̃  𝑡𝑣(0; 𝜎2), 𝑖 = 1, 2, 3 … Consider n. In this model 𝑥𝑖

𝑇 is the 

𝑝 −dimensional vector of auxiliary variables and 𝛽 = (𝛽1, 𝛽2 … , 𝛽𝑛)𝑇, the vector 𝑝 of the unknown 

guides, 𝜎2the scale parameter and the degree of freedom 𝑣 determine the heaviness of the tails of the 

distribution. Considering the Laplace prior density function with mixed-scale normal representation 

for the vector of regression coefficients 𝛽 as. 

∏
1

2𝜋𝜏𝑗
2𝜎2

exp(−
1

2𝜏𝑗
2𝜎2

𝑝

𝑗=1

𝛽𝑗
2)

𝜆2

2
𝑒−𝜆2/2𝜏𝑗

2

 

and inverse gamma density with parameters 𝑟 and 𝛾 as. 

𝜋(𝜎2) =
𝛾2

Γ(𝑟)
(

1

𝜎2
)

𝑟+1

exp (−
𝛾

𝜎2
)                         

For the parameter, 𝜎2 hierarchical Bayes model as 

𝑦|𝑋, 𝛽, 𝑣, 𝑙~𝑁(𝑋𝛽, 𝑙𝜎2, 𝐼𝑛),     𝑙|𝑣~𝐼𝐺 (
𝑣

2
,
𝑣

2
),     𝛽𝑖|𝜏1

2, 𝜏2
2, … . 𝜏𝑝

2~𝑁(0𝑝, 𝜎2𝐷𝜏),

𝐷𝜏 = 𝐷𝑖𝑎𝑔(𝜏1
2, 𝜏2

2, … . 𝜏𝑝
2), 𝑗 = 1, 2. 3 … . 𝑝, 

𝜏𝑗
2~

𝜆2

2
𝑒−

𝜆2𝜏𝑗
2

2  

𝜎2~𝐺(𝑟, 𝛾) 

we will have by using Hierarchical Bayes model, complete posterior conditional distributions for 

parameters of Bayesian T-lasso regression model to implement Gibbs algorithm as 

𝛽|𝑦, 𝑋, 𝜎2, 𝜏, 𝑙~𝑁𝑝((𝑋′𝐿−1𝑋, +𝐷𝜏−1)−1𝑦, 𝜎2 (𝑋′𝐿−1𝑋, +𝐷𝜏−1)−1), 
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𝑙|𝑦, 𝑋, 𝜎2~ ∏ 𝐼Γ (
1

2
+

𝑣

2
,
(𝑦𝑖 − 𝑋𝛽)

2𝜎2
+

𝑣

2
)

𝑛

𝑖=1

 

𝜎2|𝑦, 𝑋, 𝛽, 𝜏, 𝛾, 𝑟~𝐼Γ (
𝑛

2
+

𝑝

2
+ 𝑟,

(𝑦 − 𝑋𝛽)𝑇((𝑦 − 𝑋𝛽)𝑇𝛽𝑇𝐷−1𝜏𝛽

2
+ 𝛾) 

(
1

𝜏𝑗
2) |𝛽, 𝜎2, 𝜆~ ∏ 𝐼G (√

λ2𝜎4

𝛽𝑗
2 , 𝜆2)

𝑛

𝑖=1

                                              

"Considering the Laplace prior density function with a scale-mixture representation for the regression 

coefficient vector 𝛽 and the inverse gamma density for the parameter 𝜎2as 𝜋(𝜎2) = 1/𝜎2(Wafa, 

2019) , the hierarchical Bayesian model is as follows 

 

𝑦|𝑋, 𝛽, 𝑣, 𝑙~𝑁(𝑋𝛽, 𝑙𝜎2, 𝐼𝑛),     𝑙|𝑣~𝐼𝐺 (
𝑣

2
,
𝑣

2
),      

𝛽|𝑢, 𝜎2~ ∏ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−√𝜎2𝑢𝑗, √𝜎2𝑢𝑗 )

𝑛

𝑖=1

 

u|λ~ ∏ 𝐺𝑎𝑚𝑚𝑎(2, 𝜆)

𝑛

𝑖=1

 

𝜎2~π(𝜎2) 

we will have Based on the hierarchical Bayes model, the posterior distribution of all parameters is 

equal 

𝜋(𝛽, 𝑢, 𝜆, 𝜎2, 𝑣, 𝑙|𝑦, 𝑥) 𝛼 𝜋|𝑥, 𝛽 𝑢, 𝜆, 𝜎2, 𝑣, 𝑙)𝜋(𝛽|𝑢, 𝜎2)𝜋(𝑢|𝜆)𝜋(𝑙|𝑣)𝜋(𝜎2) 

α ∏[
1

√2𝜋𝑙𝑖𝜎2
exp (−

1

2𝑙𝑖𝜎2
(𝑦𝑖 − 𝑋𝛽)2) ×

(
𝑣
2

)

𝑣
2

Γ (
𝑣
2

)
𝑙
𝑖

−
𝑣
2

−1
𝑛

𝑖=1

exp (
−

𝑣
2

𝑙𝑖
)] 

× ∏
1

√𝜎2

𝑝

𝑗=1

I {|βj| < √𝜎2uj} e−λuj ×
1

𝜎2
 

Is. By using Hierarchical Bayes model, it is possible to obtain complete posterior conditional 

distributions for the parameters of the model for the implementation of the Gibbs algorithm. By 

introducing  𝑢 =  (𝑢1, 𝑢2, … 𝑢𝑝), the complete posterior conditional density functions are as 

𝛽|𝑦, 𝑋, 𝑢, 𝜆, 𝜎2, 𝑣, 𝑙 ~𝑁𝑝((𝑋′𝐿−1𝑋)−1) × ∏ 𝐼

𝑝

𝑗=1

{|𝛽𝑗| < √𝜎2𝑢𝑗}, 

𝑢 |𝑦, 𝑋, 𝛽, , 𝜆, 𝜎2, 𝑣, 𝑙 ~ ∏ 𝑒−𝜆𝑢𝑗𝐼 {𝑢𝑗 >
|𝛽𝑗|

√𝜎2
} ~

𝑝

𝑗=1

∏ 𝐸𝑥𝑝𝑜𝑛𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝜆)𝐼

𝑝

𝑗=1

{𝑢𝑗 >
|𝛽𝑗|

√𝜎2
} , 

𝜎2|𝑦, 𝑋, 𝛽, 𝑢, 𝜆, 𝑙~𝐼Γ ( 
𝑛 − 1 + 𝑝

2
, (

1

2
(𝑦 − 𝑋𝛽)𝑇𝐿−1(𝑦 − 𝑋𝛽)))𝐼(𝜎2 > max

𝑗
(
𝛽𝑗

2

𝑢𝑗
2)) , 

𝑙|𝑦, 𝑋, 𝛽, 𝑢, 𝜆, 𝜎2~ ∏ 𝐼Γ (
1

2
+

𝑣

2
,
𝑦𝑖 − 𝑋𝛽

2𝜎2
+

𝑣

2
)

𝑛

𝑖=1

 

Are that 𝐼(0) is the indicator function. Using the model's hierarchical display, the posterior density 

function for 𝜆 under the condition of 𝛽 is as  

𝜋(𝜆|𝛽)𝛼𝜆2𝑝 exp{−𝜆 ∑ |𝛽𝑗|𝜋(𝜆)

𝑝

𝑗=1

 

Is. Considering the gamma prior density with parameters 𝑎 and 𝑏 for 𝜆, the conditional posterior 

distribution is also the gamma distribution as. 
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𝜆|𝑦, 𝑋, 𝛽, 𝜎2𝛼𝜆𝛼+2𝑝−1 exp{−𝜆(𝑏 + ∑ |𝛽𝑗|},

𝑝

𝑗=1

 

it will be obtained. Therefore, the adjustment parameter λ is updated along with other parameters 

of the model using the Gibbs algorithm and generating samples of gamma distribution with parameters 

𝑎 +  2𝑝 and 𝑏 +  ∑ |𝛽𝑗|
𝑝
𝑗=1  . In this article, the adjustment parameter 𝜆 is estimated as the mean of the 

posterior distribution and considering the values of 𝑎 =  1 and 𝑏 =  0 for the prior density parameters. 

 

2. Method 
 The main objective of this section is to evaluate the performance of two Bayesian t-lasso 

regression methods with different scale-mixture representations: (1) Uniform Scale-Mixture 

Representation; (2) Normal Scale-Mixture Representation. The evaluation is conducted by calculating 

the DIC and MSE criteria for prediction errors in two simulation examples.  The DIC criterion is a 

generalization of the AIC criterion for Bayesian model selection problems. The DIC is defined as: 

𝐷𝐼𝐶̅̅ ̅̅ ̅ = 𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅ + 𝑃𝑑  
where 𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅ = −2𝑙𝑜𝑔𝐿(𝜃 ∣ 𝑦) is called the deviance and is a function of 𝜃, the vector of the model's 

parameters. The first term represents the expected deviance under the posterior density function of the 

parameters. 

𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅ = 𝐸𝜃∣𝑦[𝐷(𝜃)] = 𝐸𝜃∣𝑦[−2𝑙𝑜𝑔𝐿(𝜃|𝑦)] 

It is defined. The second component measures the number of effective parameters or 𝑃𝑑 as: 

𝑃𝑑 = 𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅ − 𝐷(𝜃)̅̅ ̅ = 𝐸𝜃∣𝑦[𝐷(𝜃)] − 𝐷(𝐸𝜃∣𝑦[𝜃]) = 𝐸𝜃∣𝑦[−2𝑙𝑜𝑔𝐿(𝜃|𝑦)] + ln 𝐿(𝜃|𝑦). 

It is defined. By rearranging the Pd expression, we have: 𝐷 = 𝐷(𝜃) + 𝑃𝑑, so DIC can be written as: 

𝐷𝐼𝐶 = 𝐷(𝜃̅) + 2𝑃𝑑 = 

1) Simulated Data Under the Model: The data are generated under the model 

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜖𝑖,  

2) where the error terms 𝜖𝑖 follow a t-distribution with degrees of freedom v and scale parameter 𝜎2. 

The predictors 𝑥𝑖  are drawn from a multivariate normal distribution with a covariance matrix Σ 

defined by ∑ 𝑗𝑘
 
 = 𝜌|𝑗−𝑘| with 𝜌 = 0.7. 

3) Error Distributions: The error terms 𝜖𝑖 follow two different Student's t -distributions with scale-

mixture representations (normal and uniform). The degrees of freedom considered are 𝑣 = 2,5,10,, 
with two different values for the scale parameter σ2=9\ and 𝜎2 = 9 and  𝜎2 = 25. 

4) Data Partitioning: Each simulated dataset is divided into training and test sets, each containing 50 

observations. 

5) Model Parameters: The coefficients 𝛽 are specified as 𝛽 = (3, −3,5,4, −2.8, −3.2,0,0,0,0) with 6 

non-zero and 4 zero coefficients. 

6) Model Fitting and Evaluation: Models are fitted on the training data, and the Deviance Information 

Criterion (DIC) and Mean Squared Error (MSE) are calculated for the test set. 

 

3. Results and Discussion 
 The results from 1000 simulations are summarized in Table 1, showing that the Bayesian t-lasso 

regression with uniform scale-mixture representation outperforms the normal scale-mixture 

representation across all four degrees of freedom, based on DIC and MSE. As the degrees of freedom 

increase and approach the normal distribution (𝑣 = 1000), the differences in DIC and MSE between 

the two methods decrease. The uniform scale-mixture representation is particularly effective for degrees 

of freedom 𝑣 = 5 compared to other conditions. For variable selection, the highest posterior density 

(HPD) regions are computed for model parameters. Variables are excluded if the HPD regions include 

zero. According to Table 2, in the uniform scale-mixture representation method, the parameters 

𝛽7, 𝛽8, 𝛽9, 𝛽10  can be set to zero. In contrast, the normal scale-mixture representation suggests excluding 

𝛽2, 𝛽5, 𝛽7, 𝛽8, 𝛽9, 𝛽10. Additionally, using a standard Bayesian lasso regression with normal error 

distribution for the Boston dataset suggests more coefficients for exclusion, including 

𝛽1, 𝛽2, 𝛽5, 𝛽7, 𝛽8, 𝛽9, 𝛽10. Therefore, the Bayesian t-lasso regression with uniform scale-mixture 

representation proves more efficient in variable selection as well. Also, if the normal Bayesian lasso 
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regression model with normal error distribution is used to model Boston data, more coefficients include 

𝛽1, 𝛽2, 𝛽5, 𝛽7, 𝛽8, 𝛽9, 𝛽10 is suggested to be removed from the model. Therefore, it can be said that in the 

field of variable selection, T-Lasso Bayesian regression method works better with mixed representation-

uniformity measure. 

Table 1 

Simulation Results Based on 1000 Repetitions and 100 Observations (n = 100) 

Degree of Freedom (v) 𝜎2 = 81 𝜎2 = 225 

Bayesian t-lasso (Normal Scale-Mixture)   

v=2 DIC = 450.7, MSE = 105.7 DIC = 528.1, MSE = 30.7 

v=5 DIC = 449.3, MSE = 3.3 DIC = 524.8, MSE = 8.3 

v=10 DIC = 437.5, MSE = 8.7 DIC = 525.9, MSE = 7.7 

v=1000 DIC = 434.1, MSE = 5.5 DIC = 523.8, MSE = 5.4 

Bayesian t-lasso (Uniform Scale-Mixture)   

v=2 DIC = 358.1, MSE = 17.1 DIC = 360.7, MSE = 15.7 

v=5 DIC = 339.3, MSE = 3.6 DIC = 341.4, MSE = 3.4 

v=10 DIC = 333.3, MSE = 1.8 DIC = 335.3, MSE = 1.7 

v=1000 DIC = 335.6, MSE = 6.1 DIC = 337.8, MSE = 2.0 

This table separates the values for each model and each setting of the degrees of freedom and 𝜎2, making 

it easier to compare the DIC and MSE values across different scenarios. 

Degrees of Freedom (ν): These are set at 5, 10, 50, and 1000, influencing the flexibility of the t-

distribution. 

DIC and MSE: Each cell contains two values, representing the Deviance Information Criterion (DIC) 

and the Mean Squared Error (MSE) for each combination of statistical model and degree of freedom. 

The DIC values indicate the model's complexity and fit, while the MSE values reflect the model's 

prediction accuracy.  This table helps to compare the performance of the Bayesian Lasso regression 

models under different conditions, specifically how they respond to changes in the degrees of freedom 

and the choice of prior distribution. 

Table 2 

Credibility regions for the parameters of the T-Lasso Bayesian regression model with mixed display-

uniformity measure 
Parameter 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 
value (1.42, 3.30) (0.10, 3.60) (0.14, 5.13) (1.34, 5.81) (-2.85, -0.10) 

parameter 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

value (1.89, 6.81) (-1.58, 2.33) (-0.69, 2.58) (-1.81, 1.60) (-1.78, 1.44) 

 

Real Data 

In this section, the performance of Bayesian t-lasso regression with normal and uniform scale 

mixture representations is evaluated using the Boston dataset. This dataset was reported by Harrison Jr 

& Rubinfeld, (2019) to examine various factors affecting housing prices, and the dataset is publicly 

available through the link: Boston dataset. The dataset includes 506 observations (𝑛 = 506) and 13 

explanatory variables (p = 13). The response variable, MEDV, represents the median value of owner-

occupied homes in Boston neighborhoods. The Bayesian t-lasso regression methods with normal and 

uniform scale mixture representations are applied, with degrees of freedom 𝑣 = 2, 5, 10,1000. 

Additionally, the data is utilized with a normal distribution (𝑣 = 1000) and larger values for the degrees 

of freedom to observe the relationships among the explanatory variables in the correlation matrix and 

the heatmap. The table below represents the correlation coefficients between the variables. The 

coefficients indicate the strength and direction of the relationship between the variables: positive values 

indicate a positive relationship, and negative values indicate a negative relationship. Values closer to 1 

or -1 indicate stronger relationships. This table displays the correlation coefficients between various 

variables in the Boston housing dataset. Each column and row represent one of the variables, and the 
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coefficients inside the table indicate the relationship between two variables. The correlation coefficients 

range from -1 to 1 and can be positive or negative: 

Positive coefficients indicate a positive correlation, meaning that as one variable increases, the other 

tends to increase as well. For example, the correlation between RM (the number of rooms) and MEDV 

(median value of owner-occupied homes) is 0.7, showing a strong positive relationship. 

Negative coefficients indicate a negative correlation, meaning that as one variable increases, the other 

tends to decrease. For instance, the correlation between LSTAT (percentage of lower status of the 

population) and MEDV is -0.74, indicating a strong negative relationship. 

Coefficients close to zero suggest a weak or no significant relationship between the variables. For 

example, the correlation between CHAS (Charles River dummy variable) and ZN (proportion of 

residential land zoned for lots over 25,000 sq. ft.) is almost zero, indicating no significant relationship 

between proximity to the river and the proportion of zoned residential land. Overall, this table helps 

analysts understand the relationships between different variables and how they may impact house prices 

or other metrics in the dataset.  

CRIM: Crime rate per capita by town. 

RM: Average number of rooms per dwelling. 

AGE: Proportion of owner-occupied units built before 1940. 

DIS: Weighted distances to five Boston employment centers. 

MEDV: Median value of owner-occupied homes (in $1000). 

Table 3 

Correlation matrix diagram  
CRM ZN INDS CHAS NOX RM AGE DIS RAD TAX PTRA

TIO 

B LSTAT MEDV 

CRIM 1 -0.2 0.4 -0.06 0.42 -0.22 0.35 -0.38 0.62 0.58 0.29 -0.38 0.45 -0.39 
ZN -0.2 1 -0.53 -0.04 -0.52 0.31 -0.57 0.66 -0.31 -0.31 -0.39 0.18 -0.41 0.36 

INDUS 0.4 -0.53 1 0.06 0.76 -0.39 0.64 -0.71 0.66 0.72 0.38 -0.36 0.48 -0.48 

CHAS -0.06 -0.04 0.06 1 0.09 0.09 -0.04 0.09 -0.04 -0.12 0.05 -0.05 -0.09 0.15 
NOX 0.42 -0.52 0.76 0.09 1 -0.3 0.73 -0.77 0.61 0.67 0.19 -0.39 0.59 -0.44 

RM -0.22 0.31 -0.39 0.09 -0.3 1 -0.24 0.21 -0.21 -0.29 0.36 0.13 -0.61 0.7 

AGE 0.35 -0.57 0.64 -0.04 0.73 -0.24 1 -0.75 0.46 0.51 0.26 -0.27 0.64 -0.38 

DIS -0.38 0.66 -0.71 0.09 -0.77 0.21 -0.75 1 -0.49 -0.53 -0.23 0.29 -0.5 0.25 

RAD 0.62 -0.31 0.66 -0.04 0.61 -0.21 0.46 -0.49 1 0.91 -0.44 -0.44 0.45 -0.38 

TAX 0.58 -0.31 0.72 -0.12 0.67 -0.29 0.51 -0.53 0.91 1 -0.45 -0.53 0.54 -0.47 

PTRATO 0.29 -0.39 0.38 0.05 0.19 0.36 0.26 -0.23 -0.44 -0.45 1 0.13 -0.37 0.37 
B -0.38 0.18 -0.36 -0.05 -0.39 0.13 -0.27 0.29 -0.44 -0.53 0.13 1 -0.73 0.33 

LSTAT 0.45 -0.41 0.48 -0.09 0.59 -0.61 0.64 -0.5 0.45 0.54 -0.37 -0.73 1 -0.74 

MEDV -0.39 0.36 -0.48 0.15 -0.44 0.7 -0.38 0.25 -0.38 -0.47 0.37 0.33 -0.74 1 

 

Figure 1 

Quantile diagram of t-Student distribution 

 

 
First, the response variable is centered, and the explanatory variables are standardized to have a 

mean of zero and a variance of one. Two Bayesian Lasso regression methods are fitted to the training 
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dataset, and to evaluate the performance of these methods and select the optimal model, the MSE and 

DIC criteria are calculated for the test dataset. The results are shown in Table 3. The results are obtained 

considering the student’s t-distribution with different degrees of freedom 𝑣 = 2,5,10,1000  for the model 

error distribution in the Bayesian Lasso regression method. 

According to Table 3, the performance of the Bayesian Lasso method with the mixture-scale 

uniform display is better than the other method, and the DIC and MSE criteria values for different 

degrees of freedom show significant differences. 

Table 4 

Boston Data Analysis - Values of DIC and MSE for Two Methods of Bayesian Lasso Regression with 

Normal and Uniform Priors 

Statistical Model Degree of Freedom (ν) 

ν = 2 ν = 5 ν = 10 ν = 1000 

Bayesian Lasso Regression with 

Normal Prior (DIC, MSE) 

(1901.2, 

85.2) 

(1561.7, 

83.4) 

(1839.9, 

87.3) 

(1661.3, 

34.4) 

Bayesian Lasso Regression with 

Uniform Prior (DIC, MSE) 

(1901.85, 

25.7) 

(1889.84, 

26.4) 

(1879.78, 

27.1) 

(1867.34, 

27.4) 

 

In the Table 4, 

Statistical Model: Two statistical models are evaluated: 

1. Bayesian Lasso Regression with Normal Prior; 

2. Bayesian Lasso Regression with Uniform Prior. 

Degree of Freedom (ν): The parameter ν represents the degrees of freedom for the t-distribution models. 

Different degrees of freedom are evaluated, ranging from 2 to 1000. 

DIC and MSE: Each cell in the table contains the values of DIC (Deviance Information Criterion) and 

MSE (Mean Squared Error) for each statistical model and degree of freedom. DIC is a criterion used for 

model comparison, balancing fit and complexity. MSE measures the average squared difference 

between the estimated values and the actual values. 

From the results of the regions of the highest posterior density for the parameters of the T-lasso 

Bayesian regression model with the mixed representation-uniform scale, it is concluded that the 

variables AGE and INDUS are suitable choices to be removed from the model. By calculating the 

average of the second power of the prediction error or MSPE for the model with the presence of all 

explanatory variables and the model with the exclusion of AGE and INDUS variables. Therefore, it can 

be said that the T-Lasso Bayesian regression model with mixed display-uniformity measure has 

performed well in selecting effective explanatory variables. 

The convergence of the Markov chain of the samples obtained for the parameters of the model 

using the Gibbs algorithm indicates the degree of convergence of the chain obtained from the Gibbs 

algorithm, and the effect diagram is a good intuitive criterion for evaluating the characteristics of the 

convergence of the chain (Gelman, 2011) in Figure 4 for Boston data, The graph of the effect can be 

seen in the case where v = 5. According to the diagram, the samples obtained from the Gibbs algorithm 

for the model parameters quickly traverse the posterior distribution space and have good convergence. 

Also, according to Heidelberger and Welch's convergence test (Heidelberger & Lewis, 1984), the 

Markov chain follows a stationary distribution. In general, according to the intuitive results, the T-Lasso 

Bayesian regression method based on the mixed-scale representation is better in terms of model selection 

and prediction accuracy than the T-Lasso Bayesian regression method based on the mixed-normal scale 

representation, and with increasing degrees of freedom T-Student distribution and the approach of model 

error distribution to normal distribution, the difference between the two methods decreases. 
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Figure 4 

Diagram of the effect of the samples obtained from the Gibbs algorithm for the regression coefficients 

in the T-Lasso Bayesian regression model with a homogeneous mixture display 

 
 

 

4. Conclusion  
 When linear regression models assume that errors follow a normal distribution, the traditional 

method of estimating parameters—known as ordinary least squares (OLS)—can be overly sensitive to 

outliers or unusual data points. This sensitivity can lead to less reliable results when the assumption of 

normality is violated. To address this issue, it's suggested to use alternative distributions that are more 

robust to deviations from normality. In this context, the student’s t-distribution is proposed as a more 

robust alternative to the normal distribution for modeling errors. This distribution is less influenced by 

extreme values, making it a better choice when the data does not fit the normality assumption well. To 

further improve the robustness of regression models, a Bayesian approach called the Bayesian t-Lasso 

regression model has been introduced. This model extends the traditional Bayesian Lasso regression, 

which assumes normal errors, to situations where errors might not follow a normal distribution. The 

Bayesian t-Lasso model incorporates the student’s t-distribution into the Lasso regression framework, 

offering more robust estimators under non-normal error conditions. 

The Bayesian t-Lasso regression model is evaluated using two different approaches: (a) Normal-

mixture-scale representation: This method combines the student’s t-distribution with a normal 

distribution to model the errors. (b) Uniform-mixture-scale representation: This method uses a uniform 

distribution in combination with the student’s t-distribution for a different type of prior density. 

Hierarchical Bayesian models and Gibbs sampling algorithms are employed to estimate the parameters 

of these models. The findings from simulations and real data analyses indicate that the Bayesian t-Lasso 

model using the Uniform-mixture-scale representation performs better in terms of mean squared error 

(MSE) and Deviance Information Criterion (DIC) compared to the Normal-mixture-scale 

representation. Future research will focus on selecting the most appropriate model for the Bayesian t-

Lasso regression, especially when dealing with high-dimensional data where traditional methods may 

struggle. 
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