Analysis of student learning obstacles in exponential materials: exploratory case study
Keywords:
Learning Obstacle, Exploratory Case Study, Epistemology Obstacle, Ontogeny ObstacleAbstract
Exponential learning that had been occurring so far did not pay attention to the learning obstacles that students experienced. In general, the teacher delivered material by referring to documents, textbooks, or reference books. Therefore, it was important to conduct a study that examined learning obstacles in exponential material. The purpose of this research was to analyze the learning barriers associated with exponential material. The method used in this study was descriptive qualitative, using data collection techniques in the form of observation, tests, interviews, and documentation. The research subjects were 30 students of Mts NW Aik Anyar class VIII D. Data retrieval in the research was based on the results of student answer tests using the exponential question instrument consisting of five items. The results showed that there were still many students who had difficulty working on exponential questions. It was concluded that student learning barriers were divided into two factors: ontogeny barriers (learning readiness) and epistemological barriers (knowledge of students with limited application contexts).
Downloads
References
Brousseau, G. U. Y. (2002). Epistemological obstacles, problems, and didactical engineering. Theory of Didactical Situations in Mathematics: Didactique des Mathématiques, 1970–1990, 79-117.
Cornu, B. (1991). Limits. In Advanced mathematical thinking (pp. 153-166). Dordrecht: Springer Netherlands.
Gunadi, F., & Aisah, L. S. (2019). Comic’s Mathematics Learning (CML): Pembelajaran Matematika Untuk Mengembangkan Kemampuan Literasi Matematis Siswa. Mathline: Jurnal Matematika Dan Pendidikan Matematika, 4(2), 128-138. https://doi.org/10.31943/mathline.v4i2.113
Gunawan, M. S., & Fitra, D. (2021). Kesulitan siswa dalam mengerjakan soal-soal eksponen dan logaritma. Mosharafa: Jurnal Pendidikan Matematika, 10(2), 257-268. https://doi.org/10.31980/mosharafa.v10i2.659
Hanafi, M., & Wulandari, K. N. (2019). Analisis kemampuan siswa dalam menyelesaikan soal high order thinking ditinjau dari kemampuan awal matematis siswa. In Seminar & Conference Proceedings of UMT.
Kaiser, G., & Schwarz, B. (2010). Authentic modelling problems in mathematics education—examples and experiences. Journal für Mathematik-Didaktik, 31(1), 51-76.
Khanh, T. L. C., & Loi, N. H. (2020). An analysis of the concept of exponential functions in history and textbooks in vietnam. The International Journal of Engineering and Science, 9(11), 23-28. https://doi.org/10.9790/1813-0911022328
Loi, N. H., & Khanh, T. L. C. (2020). Connecting mathematics and practice: a case study of teaching exponential functions. European Journal of Education Studies, 7(12), 612-624. http://dx.doi.org/10.46827/ejes.v7i12.3473
Lutfi, M. K., Juandi, D., & Jupri, A. (2021). Students’ ontogenic obstacle on the topic of triangle and quadrilateral. In Journal of Physics: Conference Series (Vol. 1806, No. 1, p. 012108). IOP Publishing.
Maknun, C.L., Rosjanuardi, R., & Jupri, A. (2022). Epistemological Obstacle in Learning Trigonometry. Mathematics Teaching Research Journal, 14(2), 5-25. https://files.eric.ed.gov/fulltext/EJ1350528.pdf
Maarif, S., Perbowo, K. S., & Kusharyadi, R. (2021). Depicting epistemological obstacles in understanding the concept of sequence and series. IndoMath: Indonesia Mathematics Education, 4(1), 66-80. https://doi.org/10.30738/indomath.v4i1.9339
Modestou, M., & Gagatsis, A. (2007). Students' improper proportional reasoning: A result of the epistemological obstacle of “linearity”. Educational Psychology, 27(1), 75-92. https://doi.org/10.1080/01443410601061462
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author. No Child Left Behind Act, 20 U.S.C. §6301 (2001).
Pauji, I., Hadi, H., & Juandi, D. (2023). Systematic literature review: Analysis of learning obstacle in didactical design research on geometry material. Jurnal Cendekia: Jurnal Pendidikan Matematika, 7(3), 2895-2906.
Rabillas, A., Kilag, O. K., Cañete, N., Trazona, M., Calope, M. L., & Kilag, J. (2023). Elementary Math Learning Through Piaget's Cognitive Development Stages. Excellencia: International Multi-disciplinary Journal of Education (2994-9521), 1(4), 128-142.
Russell, B., & Potter, M. (2022). Introduction to mathematical philosophy. Routledge.
Satriani, S. (2020). Analisis Kemampuan Pemecahan Masalah dan Kemampuan Penalaran Matematis Siswa Materi Eksponen dan Logaritma. Delta: Jurnal Ilmiah Pendidikan Matematika, 8(2), 193-200. https://doi.org/10.31941/delta.v8i2.1006
Sokolowski, A., & Sokolowski, A. (2018). Modeling with exponential decay function. Scientific Inquiry in Mathematics-Theory and Practice: A STEM Perspective, 65-82. https://doi.org/10.1007/978-3-319-89524-6_7
Sudirman, S., Kusumah, Y. S., Martadiputra, B. A. P., & Runisah, R. (2023). Epistemological Obstacle in 3D Geometry Thinking: Representation, Spatial Structuring, and Measurement. Pegem Journal of Education and Instruction, 13(4), 292-301. https://doi.org/10.47750/pegegog.13.04.34
Valcarce, M. C., & Vázquez, M. S. (2008). Análisis y clasificación de errores cometidos por estudiantes universitarios en el aprendizaje del concepto de convergencia de serie numérica. In Investigación en educación matemática XII (p. 22). Sociedad Española de Investigación en Educación Matemática, SEIEM.

Published
How to Cite
Issue
Section
Copyright (c) 2023 Aprianah Puspa Sari Dewi, Muhammad Zaini, Muhammad Rizal, Widya Sani Safitri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
PIJ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Articles in this journal are Open Access articles published under the Creative Commons CC BY-NC-SA License This license permits use, distribution and reproduction in any medium for non-commercial purposes only, provided the original work and source is properly cited. Any derivative of the original must be distributed under the same license as the original.