Significance and Process of Fraction Concept Comprehension: A Study of Learning Constraints from the Perspective of Mathematics Instructors
Keywords:
fractions, learning obstacles, didactic design, didactical design researchAbstract
Conversion of mixed numbers into improper fractions was one of the challenging formulaic issues in fraction learning that posed problems in education. However, there were not many studies investigating this conversion. Furthermore, few studies have attempted to provide solutions regarding this conversion issue. Therefore, this study aimed to identify the learning constraints students experienced when converting mixed numbers into improper fractions and offer alternative solutions to minimize these learning obstacles. The research design used to achieve this goal was didactical design research (DDR). DDR was chosen as it employed the identified learning constraints to develop didactic designs in fraction learning. Participants in this study were mathematics teachers aged 26, with less than five years of teaching experience. The primary instrument in this research was the researcher, using several supplementary tools such as a fraction comprehension test, interview guidelines, and didactic designs. Data were subsequently analyzed using qualitative data analysis. The research findings revealed that students were indicated to encounter learning obstacles of an epistemological nature, as they seldom initiated learning with real-life problems. The proposed solution in the didactic design was using problems as initial situations in learning, which would then be responded to by students in the form of didactic conditions. The recommendation offered in this study is implementing the didactic design itself.
Downloads
References
Adam, I. (2017). Vygotsky’s Social Constructivists Theory of Learning Assignment 2 | Learning Theories | MLS7123. Ibrahim Adam |, 1161403286, 1. https://mmls.mmu.edu.my/wordpress/1161403286/wp-content/uploads/sites/35482/2017/09/Vygotsky’s-Social-Constructivists-Theory-of-Learning.pdf
Aebi, M. F., & Linde, A. (2015). The Epistemological Obstacles in Comparative Criminology: A Special Issue Introduction. European Journal of Criminology, 12(4), 381–385. https://doi.org/10.1177/1477370815595311
Arslan, S., Baran, D., & Okumus, S. (2011). Brousseau’s Theory of Didactical Situations in Mathematics and an Application of Adidactical Situations. Necatibey Faculty of Education Electronic Journal of Sciene and Mathematics Education, 5(1), 204–224. https://www.academia.edu/813560/Brousseaus_Theory_of_Didactical_Situations_in_Mathematics_and_An_Application_of_Adidactical_Situations
Berns, R. G., & Erickson, P. M. (2001). Contextual Teaching and Learning : Preparing Students for the New Economy. The Highligt ZOne Research at Work, 5, 1–9.
Brousseau, G. (2002). Theory of didactical situations in mathematics. Kluwer Academic Publishers. https://id1lib.org/book/979725/fd6fae
Brown, E. S. (2016). Fractions: A Concept Study (Issue June 2013).
Brown, G., & Quinn, R. J. (2006). Algebra Students’ Difficulty with Fraction: An Error Analysis. AMT, 62(4), 28–40. https://eric.ed.gov/?id=EJ765838
Clabaugh, G. K. (2010). The Educational Theory of Lev Vygotsky: A Multi-Dimensional Analysis. NewFoundations. https://www.academia.edu/37149911/The_Educational_Theory_of_Lev_Vygotsky_a_multi-dimensional_analysis
Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. In Educational Research (6th ed.). SAGE Publishing. https://doi.org/10.1017/CBO9781107415324.004
Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). SAGE.
Dahl, B. (2017). What is the problem in problem-based learning in higher education mathematics. European Journal of Engineering Education, 1–14. https://doi.org/10.1080/03043797.2017.1320354
Daut Siagian, M., Suryadi, D., Nurlaelah, E., & Prabawanto, S. (2022). Investigation of secondary students’ epistemological obstacles in the inequality concept. Mathematics Teaching Research Journal, 14(4), 106–128. https://commons.hostos.cuny.edu/mtrj/wp-content/uploads/sites/30/2022/12/06-Siagian.pdf
Davtyan, R. (2014). Contextual Learning. ASEE 2014 Zone I Conference, 1–4.
Elise Lockwood, & Eric Weber. (2015). Ways of Thinking and Mathematical Practices. The Mathematics Teacher, 108(6), 461. https://doi.org/10.5951/mathteacher.108.6.0461
Fauzi, I., & Suryadi, D. (2020). The Analysis of Students’ Learning Obstacles on the Fraction Addition Material for Five Graders of Elementary Schools. Al Ibtida: Jurnal Pendidikan Guru MI, 7(1), 33–45. https://doi.org/10.24235/al.ibtida.snj.v7i1.6020
Fosnot, C. T., & Dolk, M. (2002). Young Mathematicians at Work: Constructing Fractions, Decimals, and Percents. Heinemann. https://www.pdfdrive.com/young-mathematicians-at-work-constructing-fractions-decimals-and-percents-e184060409.html
Isnawan, M. G. (2022). Desain Didaktis Pembelajaran Pecahan di SMP Negeri 1 Narmada Kabupaten Lombok Barat [Dissertation]. Universitas Pendidikan Indonesia.
Isnawan, M. G., Suryadi, D., & Turmudi, T. (2022). How do secondary students develop the meaning of fractions? A hermeneutic phenomenological study. Beta: Jurnal, 15(1), 1–19. https://doi.org/10.20414/betajtm.v15i1.496
Jitendra, A. (2002). Teaching Students Math Problem-Solving through Graphic Representations. TEACHING Exceptional Children, 34(4), 34–38. https://doi.org/10.1177/004005990203400405
Job, P., & Schneider, M. (2014). Empirical positivism, an epistemological obstacle in the learning of calculus. ZDM - International Journal on Mathematics Education, 46(4), 635–646. https://doi.org/10.1007/s11858-014-0604-0
Joutsenlahti, J., & Perkkila, P. (2019). Sustainability Development in Mathematics Education-A Case Study of What Kind of Meanings Do Prospective Class Teachers Find for the Mathematical Symbol “2/3”? Sustainability, 11(457), 1–15. https://doi.org/10.3390/su11020457
Klothou, A., Sakonidis, C., & Arsenidou, V. (2019). Learning Trajectories and Fractions: Primary Teachers’ Meaning Attributions. Eleventh Congress of the European Society for Research in Mathematics Education, 24–31. https://hal.archives-ouvertes.fr/hal-02430101/
Mackrell, K., Maschietto, M., & Soury-Lavergne, S. (2013). Theory of Didactical Situations and Instrumental Genesis for the Design of a Cabri Elementary Book. CERME, 8, 2654–2663. https://core.ac.uk/download/pdf/54003381.pdf
Moru, E. K. (2007). Talking with the Literature on Epistemological Obstacles. For the Learning Mathematics, 27(3), 34–37. https://flm-journal.org/Articles/7968B5B6DC68EB311866308086F062.pdf
Pöhler, B., & Prediger, S. (2015). Intertwining Lexical and Conceptual Learning Trajectories-A Design Research Study on Dual Macro-Scaffolding towards Percentages. Eurasia Journal of Mathematics, Science and Technology Education, 11(6), 1697–1722. https://doi.org/10.12973/eurasia.2015.1497a
Prihantini, P., Rostika, D., & Hidayah, N. (2021). Solve the problem of learning fractions in mathematics trough scaffolding. Journal of Physics: Conference Series, 1987, 1–5. https://doi.org/10.1088/1742-6596/1987/1/012027
Sari, F. A., Marlissa, I., & Dahlan, J. A. (2019). Analisis ways of thinking (wot) dan ways of understanding (wou) pada buku teks pelajaran matematika SMP kelas vii materi bilangan. Jurnal Pendidikan Matematika, 10(2), 13–24.
Suryadi, D. (2010). Penelitian Pembelajaran Matematika Untuk Pembentukan Karakter Bangsa. Seminar Nasional Matematika Dan Pendidikan Matematika Dengan Tema ”Peningkatan Kontribusi Penelitian Dan Pembelajaran Matematika Dalam Upaya Pembentukan Karakter Bangsa” Pada Tanggal 27 November 2010, November, 1–14. https://eprints.uny.ac.id/10461/
Suryadi, D. (2013). Didactical Design Research (DDR) dalam Pengembangan Pembelajaran Matematika. Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika STKIP Siliwangi Bandung, 3–12.
Suryadi, D. (2019a). Landasan Filosofis Penelitian Desain Didaktis (DDR). Pusat Pengembangan DDR Indonesia.
Suryadi, D. (2019b). Penelitian Desain Didaktis (DDR) dan Implementasinya. Gapura Press.
Suryadi, D. (2019c). Pengetahuan Transposisi sebagai Konektor Pendidikan Akademik dan Pendidikan Profesi Guru (PPG) Matematika (pp. 1–25). Universitas Pendidikan Indonesia.
Suwariyasa, M., Suarjana, I. M., & Mahadewi, L. P. P. (2016). Analisis Kemampuan Siswa dalam Menyelesaikan Perkalian Pecahan Desimal pada Siswa Kelas V. E-Journal PGSD Universitas Pendidikan Ganesha Mimbar PGSD, 6(3), 1–10. https://doi.org/10.23887/jjpgsd.v4i3.8649
Topciu, M., & Myftiu, J. (2015). Vygotsky Theory on Social Interaction and its Influence on the Development of Pre-School. European Journal of Social Science Education and Research, 2(3), 172–179. https://doi.org/10.26417/ejser.v4i1.p172-179
Ubah, I. J. A., & Bansilal, S. (2018). Pre-Service Primary Mathematics Teachers’ Understanding of Fractions: An Action-Process-Object-Schema Perspective. South African Journal of Childhood Education, 8(2), 1–12. https://doi.org/10.4102/sajce.v8i2.539
Umbara, U., & Suryadi, D. (2019). Re-interpretation of mathematical literacy based on the teacher’s perspective. International Journal of Instruction, 12(4), 789–806. https://doi.org/10.29333/iji.2019.12450a
Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher-student interaction: A decade of research. Educational Psychology Review, 22(3), 271–296. https://doi.org/10.1007/s10648-010-9127-6
Verenikina, I. (2003). Vygotsky’s Socio-Cultural Theory and the Zone of Proximal Development. In E. H. Hasan, E. Gould, & I. Verenikina (Eds.), Information Systems and Activity Theory: Expanding the Horizon (pp. 1–8). University of Wollongong Press.
Wahyu, K. (2021). How students understand smaller fractions divided by greater fractions? Beta: Jurnal Tadris Matematika, 14(1), 85–92. https://doi.org/10.20414/betajtm.v14i1.447
Walyanda, U., & Yani, A. (2018). Analisis Kesulitan Siswa dalam Menyelesaikan Soal Pokok Bahasan Operasi Hitung Pecahan di SMP Negeri 13 Pontianak. Jurnal Pendidikan Dan Pembelajaran, 7(5), 1–9. https://jurnal.untan.ac.id/index.php/jpdpb/article/view/25751/75676576814
Yulianingsih, A., Febrian, & Dwinata, A. (2018). Analisis Kesalahan Konsep Pecahan pada Siswa Kelas VII A SMP Negeri 13 Satu Atap Tanjungpinang. Mosharafa: Jurnal Pendidikan Matematika, 7(2), 199–206. https://doi.org/10.31980/mosharafa.v7i2.22

Published
How to Cite
Issue
Section
Copyright (c) 2023 Naif Mastoor Alsulami, Muhamad Galang Isnawan

This work is licensed under a Creative Commons Attribution 4.0 International License.
PIJ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Articles in this journal are Open Access articles published under the Creative Commons CC BY-NC-SA License This license permits use, distribution and reproduction in any medium for non-commercial purposes only, provided the original work and source is properly cited. Any derivative of the original must be distributed under the same license as the original.