The Impact of augmented reality on the learning of polyhedral: an approach based on didactical engineering and instrumental genesis
Keywords:
Computer-assisted teaching, Educational technology, Geometry Mathematics, VisualizationAbstract
Despite the relevance of spatial skills in mathematics education, upper-secondary students face persistent difficulties, especially in the manipulation and conceptual understanding of three-dimensional objects. This study aims to design, implement, and analyze a didactic sequence mediated by Augmented Reality (AR) for the learning of polyhedral. The novelty lies in the analysis of the underlying cognitive processes through the framework of Instrumental Genesis, basing the design on the principles of Didactic Engineering. The research adopts a mixed-method and quasi-experimental approach. A pre-test and post-test were administered to a sample of fourth-semester upper-secondary students (n=12), complemented by an exhaustive qualitative analysis of the interaction with the GeoGebra 3D AR tool. Pre-test findings confirmed student weaknesses, showing only 25% success on measurement and dimensioning tasks. The post-intervention analysis demonstrated a significant and positive impact of the didactic sequence, evidenced by the total adaptation and instrumentalization of the AR tool. This resulted in a favorable evolution of cognitive schemes and a noticeable improvement in spatial visualization skills. The findings suggest that successful technological integration in 3D geometry must be guided by rigorous theoretical design and a detailed analysis of knowledge construction mediated by the instrument, providing empirical evidence for the implementation of AR in the mathematics classroom.
Downloads
References
Aguilar, M. S., Borba, M. D. C., & Villa-Ochoa, J. A. (2025). Latin American research on mathematics education: A narrative review. ZDM–Mathematics Education, 57(4), 1271–1286. https://doi.org/10.1007/s11858-025-01754-4
Arteaga-Valdés, E., Medina Mendieta, J. F., & del Sol Martínez, J. L. (2019). El GeoGebra: Una herramienta tecnológica para aprender matemática en la Secundaria Básica haciendo matemática [GeoGebra: A technological tool for learning mathematics in Basic Secondary Education by doing mathematics]. Revista Conrado, 15(70), 102–108. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1990-86442019000500102
Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274. https://doi.org/10.1023/A:1022103903080
Artigue, M. (2020). Didactic engineering in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 202–206). Springer. https://doi.org/10.1007/978-94-007-4978-8_44
Artigue, M., Douady, R., Moreno, L., & Gómez, P. (1995). Ingeniería didáctica en educación matemática: Un esquema para la investigación y la innovación en la enseñanza y el aprendizaje de las matemáticas. Grupo Editorial Iberoamérica.
Ayala, S. E. M., & Portillo, R. A. (2012). La evaluación durante el ciclo escolar. Secretaría de Educación Pública. https://www.planyprogramasdestudio.sep.gob.mx/evaluacion/pdf/cuadernillos/Evaluar-y-Planear-digital.pdf
Baez, M. S. C. M. L., & González, A. G. (2016). Realidad aumentada en dispositivos móviles como herramienta de aprendizaje del sistema solar [Augmented reality on mobile devices as a learning tool for the solar system]. Memorias del Congreso de Investigación Academia Journals, 8(1), 1880–1886.
Battista, M. T. (2007). The development of geometric and spatial thinking. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 843–908). Information Age Publishing.
Cangas, D., Morga, G., & Rodríguez, J. L. (2019). Geometry teaching experience in virtual reality with NeoTrie VR. Psychology, Society and Education, 11(3), 355–366. https://doi.org/10.25115/psye.v11i3.2270
Dünser, A., Walker, L., Horner, H., & Bentall, D. (2012). Creating interactive physics education books with augmented reality. Proceedings of the 24th Australian Computer-Human Interaction Conference, 107–114. https://doi.org/10.1145/2414536.2414554
Duval, R. (2017). Understanding the mathematical way of thinking: The registers of semiotic representations. Springer. https://doi.org/10.1007/978-3-319-56910-9
García, S., & López, O. (2008). La enseñanza de la geometría [The teaching of geometry]. In Educación matemática (1st ed., pp. 11–74). Instituto Nacional para la Evaluación de la Educación. https://www.inee.edu.mx/wp-content/uploads/2019/01/P1D401.pdf
Garzón, J., Pavón, J., & Baldiris, S. (2019). Systematic review and meta-analysis of augmented reality in educational settings. Virtual Reality, 23(4), 447–459. https://doi.org/10.1007/s10055-019-00379-9
Gómez-Vargas, I., Medel-Esquivel, R., & García-Salcedo, R. (2018). Realidad aumentada como herramienta didáctica en geometría 3D [Augmented reality as a teaching tool in 3D geometry]. Latin-American Journal of Physics Education, 12(4), 1–8.
González-Sosa, J. V., Gutiérrez Carrillo, R. D., & Sandoval Murcia, M. (2017). Desarrollo didáctico con GeoGebra como herramienta para la enseñanza en aplicaciones de mecanismos y diseño de maquinaria dentro de la ingeniería [Didactic development with GeoGebra as a tool for teaching in mechanism applications and machinery design within engineering]. Memorias del XXIII Congreso Internacional Anual de la SOMIM, 1–6.
Guin, D., & Trouche, L. (2002). Mastering by the teacher of the instrumental genesis in CAS environments: Necessity of instrumental orchestrations. Zentralblatt für Didaktik der Mathematik, 34(5), 204–211. https://doi.org/10.1007/bf02655823
Hegedus, S., Laborde, C., Brady, C., Dalton, S., Siller, H. S., Tabach, M., Trgalova, J., & Moreno-Armella, L. (2017). Uses of technology in upper secondary mathematics education. In S. Hegedus & J. Roschelle (Eds.), The SimCalc vision and contributions: Democratizing access to important mathematics (pp. 1–28). Springer. https://doi.org/10.1007/978-3-319-42611-2_1
Ibáñez, M. B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109–123. https://doi.org/10.1016/j.compedu.2018.05.002
Murcia, M. (2012). Tutorial de GeoGebra: GeoGebra apoyo tecnológico para la enseñanza del cálculo. Universidad Industrial de Santander.
Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In J. S. Gero (Ed.), Studying visual and spatial reasoning for design creativity (pp. 179–192). Springer. https://doi.org/10.1007/978-94-017-9297-4_10
Panorkou, N., & Maloney, A. P. (2016). Early algebra: Expressing covariation and correspondence. Teaching Children Mathematics, 23(2), 90–99. https://doi.org/10.5951/teacchilmath.23.2.0090
Pittalis, M., & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75(2), 191–212. https://doi.org/10.1007/s10649-010-9251-8
Rabardel, P. (1995). Les hommes et les technologies: Approche cognitive des instruments contemporains. Armand Colin.
Su, Y. S., Cheng, H. W., & Lai, C. F. (2022). Study of virtual reality immersive technology enhanced mathematics geometry learning. Frontiers in Psychology, 13, Article 760418. https://doi.org/10.3389/fpsyg.2022.760418
Sudirman, S., Belbase, S., Rodríguez-Nieto, C., Muslim, A., & Faizah, S. (2025). Personalization of interactive teaching materials supported by augmented reality: Potentials vs obstacles in 3D geometry learning. Journal of Curriculum Studies Research, 7(1), 152–178. https://doi.org/10.46303/jcsr.2025.8
Sudirman, S., Dejarlo, J., Susandi, A. D., & Triyono, D. (2024). Institutionalization of the 5E instructional model integrated augmented reality interactive book (5E-IMARIB): Its impact in increasing students' understanding of 3D geometry concepts and self-efficacy. Jurnal Pendidikan MIPA, 25(1), 195–209. https://doi.org/10.23960/jpmipa/v25i1.pp195-209
Sugiarni, R., Aulia, P., Suryadini, N., Bonyah, E., & Olivero-Acuña, R. R. (2025). Interactive GeoGebra media embedded in student worksheets: A design approach to foster mathematical engagement in 3D geometry. International Journal of Didactic Mathematics in Distance Education, 2(2), 165–178. https://doi.org/10.33830/ijdmde.v2i2.11362
Vakaliuk, T. A., Shevchuk, L. D., & Shevchuk, B. V. (2020). Possibilities of using AR and VR technologies in teaching mathematics to high school students. Universal Journal of Educational Research, 8(11), 6280–6288. https://doi.org/10.13189/ujer.2020.082267
Published
How to Cite
Issue
Section
Copyright (c) 2025 Alberto Apreza Sies, Guillermina Sánchez-Román, José Antonio Juárez-López

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The use of non-commercial articles will be governed by the Creative Commons Attribution license as currently approved at http://creativecommons.org/licenses/by/4.0/. This license allows users to (1) Share (copy and redistribute the material in any medium) or format; (2) Adapt (remix, transform, and build upon the material), for any purpose, even commercially.





